Citing AccelForge ================= **Please cite all of the following papers if you use this work.** This work is the combination of the following: - **CiMLoop**: The architecture and component specification. - **Fast & Fusiest**: The multi-Einsum mapper. - **LoopTree**: The mapping specification. - **LoopForest**: The mapspace specification. - **Turbo-Charged**: The single-Einsum mapper (and an essential first step for Fast & Fusiest). They are available as the following: .. code-block:: latex \cite{cimloop, fast_fusiest, turbo_charged, looptree, loopforest} .. code-block:: bibtex @INPROCEEDINGS{cimloop, author={Andrulis, Tanner and Emer, Joel S. and Sze, Vivienne}, booktitle={2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)}, title={CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool}, year={2024}, volume={}, number={}, pages={10-23}, keywords={Performance evaluation;Accuracy;Computational modeling;Computer architecture;Artificial neural networks;In-memory computing;Data models;Compute-In-Memory;Processing-In-Memory;Analog;Deep Neural Networks;Systems;Hardware;Modeling;Open-Source}, doi={10.1109/ISPASS61541.2024.00012}} @INPROCEEDINGS{looptree, author={Gilbert, Michael and Wu, Yannan Nellie and Parashar, Angshuman and Sze, Vivienne and Emer, Joel S.}, booktitle={2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)}, title={LoopTree: Enabling Exploration of Fused-layer Dataflow Accelerators}, year={2023}, volume={}, number={}, pages={316-318}, keywords={Deep learning;Analytical models;Systematics;Neural networks;Bandwidth;Software;Energy efficiency;analytical modeling;layer fusion;accelerators}, doi={10.1109/ISPASS57527.2023.00038}} TODO: More citations